Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Numerical Prediction and Validation of Fuel Spray Behavior in a Gasoline Direct-Injection Engine

2001-09-24
2001-01-3668
Analysis of flow field and charge distribution in a gasoline direct-injection (GDI) engine is performed by a modified version of the KIVA code. A particle-based spray model is proposed to simulate a swirl-type hollow-cone spray in a GDI engine. Spray droplets are assumed to be fully atomized and introduced at the sheet breakup locations as determined by experimental correlations and energy conservation. The effects of the fuel injection parameters such as spray cone angle and ambient pressure are examined for different injectors and injection conditions. Results show reasonable agreement with the measurements for penetration, dispersion, global shape, droplet velocity and size distribution by Phase Doppler Particle Anemometry(PDPA) in a constant-volume chamber. The test engine is a 4-stroke 4-valve optically accessible single-cylinder engine with a pent-roof head and tumble ports.
Technical Paper

Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine with End Gas Ignition

2018-04-03
2018-01-0199
The present study helps to understand the local combustion characteristics of PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion mode while using increasing amount of natural gas as a diesel substitute in conventional CI engine. In order to reduce NOx emission and diesel fuel consumption micro-pilot diesel injection in premixed natural gas-air mixture is a promising technique. New strategy has been employed to simulate dual fuel combustion which uses well established combustion models. Main focus of the simulation is at detection of an end gas ignition, and creating an unified modeling approach for dual fuel combustion. In this study G-equation flame propagation model is used with detailed chemistry in order to detect end-gas ignition in overall low temperature combustion. This combustion simulation model is validated using comparison with experimental data for dual fuel engine.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Emissions in a High-Speed Direct-Injection Diesel Engine

2001-03-05
2001-01-1004
Experimental data is used in conjunction with multi-dimensional modeling in a modified version of the KIVA-3V code to characterize the emissions behavior of a high-speed, direct-injection diesel engine. Injection pressure and EGR are varied across a range of typical small-bore diesel operating conditions and the resulting soot-NOx tradeoff is analyzed. Good agreement is obtained between experimental and modeling trends; the HSDI engine shows increasing soot and decreasing NOx with higher EGR and lower injection pressure. The model also indicates that most of the NOx is formed in the region where the bulk of the initial heat release first takes place, both for zero and high EGR cases. The mechanism of NOx reduction with high EGR is shown to be primarily through a decrease in thermal NOx formation rate.
Technical Paper

Modeling of Dynamic Responses of Injectors for an Automotive Fuel Rail System

1999-03-01
1999-01-0795
This paper presents a computer model for simulating dynamic responses inside an injector of an automotive fuel rail system. The injector contains a filter at the top, a coil spring in the middle, and a needle and orifices at the bottom. The equations of motion for unsteady one-dimensional flow are derived for the fluid flowing through the injector. The needle motion is described by a second order ordinary differential equation. The forces exerted on the needle include the magnetic force that controls the opening and closing of the injector and the coil spring force. To account for the loss of kinetic energy, we define two loss factors Ka and Kb. The former describes the loss of kinetic energy as fluid enters the injector through the filter at the top, and the latter depicts that as fluid is ejected into a large chamber through the passage between the needle and the needle seat and across four orifices at the bottom of the injector.
Technical Paper

Modeling and Validation of Lithium-Ion Polymer SLI Battery

2019-04-02
2019-01-0594
Lead-acid batteries have dominated the automotive conventional electric system, particularly in the functions of starting (S), lighting (L) and ignition (I) for decades. However, the low energy-to-weight ratio and the low energy-to-volume ratio makes the lead-acid SLI battery relatively heavy, large, and shallow Depth of Discharge (DOD). This could be improved by replacing the lead-acid battery by the lithium-ion polymer battery. The lithium-ion polymer battery can provide the same power with lightweight, compact volume, and deep DOD for engine idle elimination using start-stop function that is a basic feature in electric-drive vehicles. This paper presents the modeling and validation of a lithium-ion battery for SLI application. A lithium-metal-oxide based cell with 3.6 nominal voltage and 20Ah capacity is used in the study. A simulation model of lithium-ion polymer battery pack (14.4V, 80Ah) with battery management system is built in the MATLAB/Simulink environment.
Technical Paper

Modeling Dynamic Behavior of Diesel Fuel Injection Systems

2004-03-08
2004-01-0536
Precise control of fuel delivery and injection pressure is essential in modern DI diesel engines. Electronically controlled high-pressure injection systems provide features required by modern diesel engines such as precise injection quantity, flexible injection timing, flexible rate of injection with multiple injections and high injection pressures. A comprehensive experimental and numerical investigation has been performed to determine the influence of operating parameters and critical injector design parameters on the dynamic performance of advanced high-pressure electronically controlled diesel injection systems. The injection systems compared in this study are the High Pressure Common Rail (HPCR) and the Hydraulic Electronic Unit Injector (HEUI). Experiments are carried out using a Bosch type injection-rate meter. Needle lift, injection-rate/rate shape, and injection pressure are measured.
Technical Paper

Microscopic Characterization of Diesel Sprays at VCO Nozzle Exit

1998-10-19
982542
A long-distance microscope with pulse-laser as optical shutter up to 25kHz was used to magnify the diesel spray at the nozzle hole vicinity onto 35-mm photographic film through a still or a high-speed drum camera. The injectors examined are high-pressure valve-covered-orifice (VCO) nozzles, from unit injector and common rail injection systems. For comparison, a mini-sac injector from a hydraulic unit injector is also investigated. A phase-Doppler particle analyzer (PDPA) system with an external digital clock was also used to measure the droplet size, velocity and time of arrival relative to the start of the injection event. The visualization results provide very interesting and dynamic information on spray structure, showing spray angle variations, primary breakup processes, and spray asymmetry not observed using conventional macroscopic visualization techniques.
Technical Paper

Lithium-Ion Battery Cell Modeling with Experiments for Battery Pack Design

2020-04-14
2020-01-1185
Lithium-ion polymer battery has been widely used for vehicle onboard electric energy storage ranging from 12V SLI (Starting, Lighting, and Ignition), 48V mild hybrid electric, to 300V battery electric vehicle. Formulation on cell parameters acquired from minimum numbers of experiments, the modeling and simulation could be an effective approach in predicting battery performance, thermal effectiveness, and degradation. This paper describes the modeling, simulation, and validation of Lithium-Nickel-Manganese-Cobalt-Oxide (LiNiMnCoO2) based cell with 3.6V nominal voltage and 20Ah capacity. Constant current 20A, 40A, 60A, and 80A discharge tests are conducted in the computer-controlled cycler and temperature chamber. Discharging voltage curves and cell surface temperature distributions are recorded in each discharging test. A three-dimensional cell model is constructed in the COMSOL multi-physics platform based on the cell parameters.
Technical Paper

Investigation of Low-Temperature Combustion in an Optical Engine Fueled with Low Cetane Sasol JP-8 Fuel Using OH-PLIF and HCHO Chemiluminescence Imaging

2013-04-08
2013-01-0898
Low cetane JP-8 fuels have been identified as being difficult to use under conventional diesel operation. However, recent focus on low-temperature combustion (LTC) modes has led to an interest in distillate hydrocarbon fuels having high volatility and low autoignition tendency. An experimental study is performed to evaluate low-temperature combustion processes in a small-bore optically-accessible diesel engine operated in a partially-premixed combustion mode using low-cetane Sasol JP-8 fuel. This particular fuel has a cetane number of 25. Both single and dual injection strategies are tested. Since long ignition delay is a consequence of strong autoignition resistance, under the conditions examined, low cetane Sasol JP-8 combustion can only take place with a double injection strategy: one pilot injection event in the vicinity of exhaust TDC and one main injection event near firing TDC.
Technical Paper

Investigation of Ignition Energy with Visualization on a Spark Ignited Engine powered by CNG

2014-04-01
2014-01-1331
The need for using alternative fuel sources continues to grow as industry looks towards enhancing energy security and lowering emissions levels. In order to capture the potential of these megatrends, this study focuses on the relationship between ignition energy, thermal efficiency, and combustion stability of a 0.5 L single cylinder engine powered by compressed natural gas (CNG) at steady state operation. The goal of the experiment was to increase ignition energy at fixed lambda values to look for gains in thermal efficiency. Secondly, a lambda sweep was performed with criteria of maintaining a 4% COVIMEP by increasing the ignition energy until an appropriate threshold for stable combustion was found. The engine performance was measured with a combustion analysis system (CAS), to understand the effects of thermal efficiency and combustion stability (COVIMEP). Emissions of the engine were measured with an FTIR.
Technical Paper

Investigation of Diesel Spray Primary Break-up and Development for Different Nozzle Geometries

2002-10-21
2002-01-2775
The nozzle configuration for an injector is known to have an important effect on the fuel atomization. A comprehensive experimental and numerical investigation has been performed to determine the influence of various internal geometries on the primary spray breakup and development using the electronically controlled high-pressure diesel injection systems. Different types of multi-hole minisac and VCO nozzles with cylindrical and tapered geometries, and different types of single-hole nozzles with defined grades of Hydro Grinding (HG) were investigated. The global characteristics of the spray, including spray angle, spray tip penetration and spray pattern were measured from the spray images with a high-speed drum camera. A long-distance microscope with a pulsed-laser as the optical shutter was used to magnify the diesel spray at the nozzle hole vicinity. A CFD analysis of the internal flow through various nozzle geometries has been carried out with a commercial code.
Technical Paper

Interactions of Multi-hole DI Sprays with Charge Motion and their Implications to Flexible Valve-trained Engine Performance

2011-08-30
2011-01-1883
Advanced valvetrain coupled with Direct Injection (DI) provides an opportunity to simultaneous reduction of fuel consumption and emissions. Because of their robustness and cost performance, multi-hole injectors are being adopted as gasoline DI fuel injectors. Ethanol and ethanol-gasoline blends synergistically improve the performance of a turbo-charged DI gasoline engine, especially in down-sized, down-sped and variable-valvetrain engine architecture. This paper presents Mie-scattering spray imaging results taken with an Optical Accessible Engine (OAE). OAE offers dynamic and realistic in-cylinder charge motion with direct imaging capability, and the interaction with the ethanol spray with the intake air is studied. Two types of cams which are designed for Early Intake Valve Close (EIVC) and Later Intake Valve Close (LIVC) are tested, and the effect of variable valve profile and deactivation of one of the intake valves are discussed.
Technical Paper

In-Cylinder Air/Fuel Ratio Approximation Using Spark Gap Ionization Sensing

1998-02-23
980166
Experiments were conducted on a single cylinder engine to measure the ionization current across the spark plug electrodes as a function of key operating parameters including air/fuel ratio. A unique ignition circuit was adapted to measure the ion current as early as 300 microseconds after the initiation of spark discharge. A strong relationship between air/fuel ratio and features of the measured ion current was observed. This relationship can be exploited via relatively simple algorithms in a wide range of electronic engine control strategies. Measurements of spark plug ion current for approximating air/fuel ratio may be especially useful for use with low cost mixture control in small engine applications. Cylinder-to-cylinder mixture balancing in conjunction with a global exhaust gas oxygen sensor is another promising application of spark plug ion current measurement.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
Technical Paper

Impact of Biodiesel Emission Products from a Multi-Cylinder Direct Injection Diesel Engine on Particulate Filter Performance

2009-04-20
2009-01-1184
As diesel emission regulations continue to increase, the use of exhaust aftertreatment systems containing, for example the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) will become necessary in order to meet these stringent emission requirements. The addition of a DOC and DPF in conjunction with utilizing biodiesel fuels requires extensive research to study the implications that biodiesel blends have on emissions as well as to examine the effect on aftertreatment devices. The proceeding work discusses results from a 2006 VM Motori four-cylinder 2.8L direct injection diesel engine coupled with a diesel oxidation catalyst and catalyzed diesel particulate filter. Tests were done using ultra low sulfur diesel fuel blended with 20% choice white grease biodiesel fuel to evaluate the effects of biodiesel emission products on the performance and effectiveness of the aftertreatment devices and the effect of low temperature combustion modes.
Technical Paper

GDi Skew-Angled Nozzle Flow and Near-Field Spray Analysis using Optical and X-Ray Imaging and VOF-LES Computational Fluid Dynamics

2013-04-08
2013-01-0255
Improvement of spray atomization and penetration characteristics of the gasoline direct-injection (GDi ) multi-hole injector is a critical component of the GDi combustion developments, especially in the context of engine down-sizing and turbo-charging trend that is adopted in order to achieve the European target CO₂, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards optimization of the nozzle designs, in order to improve the GDi multi-hole spray characteristics. This publication reports VOF-LES analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries. The objective is to extend previous works to include the effect of nozzle-hole skew angle on the nozzle flow and spray primary breakup. VOF-LES simulations of a single nozzle-hole of a purpose-designed GDi multi-hole seat geometry, with three identical nozzle-holes per 120° seat segment, are performed.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Technical Paper

Experimental and Simulation Analysis of PFI-SI Engine for Fuel Economy Improvement

2005-10-24
2005-01-3691
Variable Valve Timing (VVT) strategy on both intake and exhaust valves has a pivotal influence on the specific fuel consumptions and engine performance. In addition to this, fuel economy can also be enhanced by the application of Variable Compression Ratio (VCR) strategy. This paper presents three possible strategies to enhance fuel economy improvement: A possible VVT strategy Early Intake Valve Opening (EIVO) and Late Exhaust Valve Closure (LEVC) that alters the valve overlap to reduce fuel consumption A two-position VCR system that improves fuel conversion factor to realize fuel economy A strategy that combines above two technologies to produce a complementary effect on fuel economy All three strategies have been tested on a 1.8L DOHC four cylinder PFI engine. AVL BOOST a 1D engine gas exchange and cycle simulation code was used to model this engine to get fuel economy gains at part-load points.
X